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Models for the amorphization of compressed crystals

Robin J Speedy
Chemistry Department, Victoria University of Wellington, PO Box 600, Wellington,
New Zealand

Received 21 May 1996, in final form 9 October 1996

Abstract. A permanently bonded diamond network, with flexible bond lengths and angles, is
characterized by computer simulation and used as the reference state for a perturbation treatment
that favours tetrahedral bond angles. At low temperatures the perturbed system has three phases
separated by two sets of van der Waals loops. The intermediate-pressure phase is an open crystal
which, like ice or quartz, expands when cooled and collapses under pressure to an amorphous
solid. Two-dimensional honeycomb networks show the same behaviour.

1. Introduction

Some crystals collapse sharply to an amorphous solid when they are compressed. Examples
are ice [1–3],α quartz (SiO2) [4], coesite (SiO2) [4], perovskite (CaSiO2) [5], α berlinite
(AIPO4) [6] and aqueous clathrates [7]. Stishovite, a polymorph of silica that is stable at
high pressure, becomes amorphous when decompressed [8]. The crystal-to-glass transitions
occur at low temperatures where both phases are metastable but where formation of the
more stable crystal is slow. The collapse has been studied by computer simulation [9–
14] and theoretically [15] with most interpretations focusing on the failure of the Born
criteria for mechanical stability. Sciortinoet al [14] show that when ice is simulated under
conditions of extreme compression or tension the compressibility becomes very large and its
density dependence suggests spinodal-like divergences near the practical limit of stability
of the crystal. Memory effects are reported [6, 7, 10, 13]. For instance, when aqueous
clathrates are made amorphous by compression they revert back to the original crystal on
decompression [7]. Low-density amorphous solid forms of water [3] and silica [16] also
collapse to higher-density amorphous forms when compressed.

Several crystals, including those with a diamond-lattice structure, expand when they
are cooled towards absolute zero. Examples are ice (T < 65 K), diamond (T < 90 K),
silicon (T < 120 K) and germanium (T < 48 K) [17]. Amorphous materials that expand
when cooled include glassy silica (T < 30 K), other mixed silica-based glasses [17] and
the liquids water, silica and silicon. The examples given suggest connections between
expansion on cooling, collapse on compression, spinodal instabilities and a preference for
tetrahedral bond angles.

This paper develops a model for the above anomalies and suggests that they have a
common origin, which may be independent of whether the phases involved are crystalline
or amorphous, or even solid. In a tetravalent network, the four bonded neighbours of each
particle are as far apart as possible when they are arranged tetrahedrally, so repulsive forces
between the non-bonded second neighbours naturally favour the tetrahedral bond angles that
occur in diamond lattices. Any variation in the bond angles in a diamond lattice increases
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its density, unless there is a compensating increase in the bond lengths, so increasing
fluctuations in the bond angles at higher temperatures contribute to a contraction on warming.
The collapse under pressure can also occur by varying the bond angles, without breaking
bonds. That explains why the collapse can occur readily at low temperatures, where the
bond breaking rate is slow, and it can also explain the memory effects [6, 7, 10, 13] because
the network topology of the original crystal is stored in the collapsed product.

The first step is to show that a model network, with flexible bond angles and lengths,
transforms from an open crystal under tension to dense amorphous forms under compression,
without breaking any bonds. This model is later used as the reference system for a
perturbation treatment in which the perturbing potential favours tetrahedral bond angles.
Most of the perturbed models studied contain two sets of van der Waals loops separating
three phases. The phase transitions arise because in the flexible reference system the bond
angles can have a broad distribution, but the perturbation can cause the angles to ‘condense’
to a narrow distribution, analogous to the gas-to-liquid condensation in van der Waals theory.
The phase that is stablized by the perturbation models an ice like crystal that expands when
cooled and collapses when compressed. It is bounded by spinodal instabilities, consistent
with the observations of Sciortinoet al [14]. The same phenomenology is obtained in two
and three dimensions and is insensitive to variation of the only free parameter in the model.

A variety of lattice models [18–21] have been developed to mimic the anomalies of cold
water. The advantage of lattice models is that they can be solved analytically to obtain the
phase diagram and thermodynamic properties, with well defined approximations, and they
show the relation between phase transitions, spinodal line and the loci of density extrema
[18–21]. The present approach generates a similar phenomenology from an off-lattice model
that, like the examples mentioned above, can become structurally amorphous.

2. Permanently bonded networks

Most papers [9–14] on the simulation of crystal collapse stress the importance of using a
potential that accurately represents the properties of a particular real material. This work
attempts to capture the generic features that tetravalent network materials have in common
rather than the particulars that make them different. It provides a simple model than can
reproduce the phenomenology and which may isolate the factors that are essential to its
explanation.

A saturated-square-well (SSW) potential [2] is used to model permanently bonded
network structures with flexible bond lengths and angles. The topology of the network
is that of the trivalent (Nv = 3) honeycomb crystal in two dimensions (D = 2), as shown
in figure 1, or the tetravalent (Nv = 4) diamond crystal in three dimensions (D = 3). The
particles have a hard-sphere core of diameterσ and a square well of diameterλσ . The rules
that define the system are (i) the bonds present in the starting configuration (honeycomb
or diamond lattice) cannot break and no other bonds can form, (ii) the separation between
the centres of bonded pairs is always in the rangeσ–λσ and (iii) the separation between
non-bonded pairs is always greater thanλσ . The honeycomb lattice was modelled by the
SSW (Nv = 3, D = 2) potential withλ = 1.3, 1.4, 1.5 and

√
3 and the diamond lattice by

the SSW (Nv = 4, D = 3) potential withλ = 1.2, 1.3, 1.4, 1.5 and
√

(8/3). Most of the
simulations were forN = 512 (D = 3) or N = 600 (D = 2) particles in a cubic (D = 3) or
rhomboidal (D = 2) cell with periodic boundaries, using the molecular dynamics technique
pioneered by Alder and Wainwright [23]. The above rules were implemented by forcing a
pair to bounce elastically whenever their separation reachedσ or λσ . The dynamics of a
bounce are determined by the conversation of energy and linear momentum and by the fact



Models for the amorphization of compressed crystals 10909

Figure 1. The honeycomb lattice starting configuration forN = 96 SSW(Nv = 3, D = 2,
λ = √

3) particles. Small circles of diameterσ show the hard cores and larger circles of diameter
λσ show the square well. Particles are bonded when their larger circles overlap. Non-bonded
particles bounce like hard spheres of diameterλσ .

that the impulse is transmitted along the line of the centres of the bouncing pair.
The density scale,z = √

27(N/V )(σ/2)D, is chosen such thatz = 1 in the perfect
crystal when all bonded pairs are at the contact separationσ and all bond angles are equal.
z can exceed unity whenλ is small because the crystals can deform to denser structures by
varying the bond angles, as shown in figure 2. There is a special value ofλ(λ = √

3 when
D = 2 [22] andλ = √

(8/3) when D = 3 [24]) for which the closest-packed state is a
perfect honeycomb or diamond crystal withz = 1 and non-bonded second neighbours are
in contact at the separationλσ . These models have been studied previously [22, 24, 25].

Figure 3 shows how the pressure varies with density. The permanently bonded networks
can be stretched to the limit where the bond lengths are at their maximum extensionλσ .
In this limit they are perfect honeycomb or diamond crystals, the density isz = λ−D and
the pressure diverges to minus infinity. The pressure divergence was found empirically to
have the form

PV/NkBT = C1/(1 − λDz) (1)

with C1 = 1.76 (D = 2) andC1 = 2.56 (D = 3). P is the pressure,V is the volume (area)
of the simulation cell andkBT is Boltzmann’s constant multiplied by the temperature.
At large tensions (negative pressures), core collisions between bonded pairs are rare so
all the models have the samePV/NkBT at the same value of the scaled density,λDz.
Equation (1) reproduces pressures measured in the range−10 > PV/NkBT > −100 to
within 1%, except for the caseλ = 1.2 where core collisions between bonded pairs remain
significant toPV/NkBT = −20. In the high-density extreme the pressure diverges to plus
infinity at a densityzmax with the form [22, 24, 25]

PV/NkBT = C2/(1 − z/zmax). (2)

When the close-packed state is crystallineC2 = D but when it is amorphousC2 < D

[24, 25]. In the intermediate-pressure range−10 < PV/NkBT < 20, where equations (1)



10910 R J Speedy

Figure 2. Two high-density configurations ofN = 96 SSW (Nv = 3, D = 2, λ = 1.4)
permanently bonded particles. Dots locate the particle centres and lines show the bonds. (a) A
crystalline structure at densityz = 1.1 where PV/NkBT = 157.4. The radial and angle
distribution functions for this structure show sharp peaks. (b) A glassy structure at density
z = 1.08 wherePV/NkBT = 165.5. Radial and angle distribution functions for this structure
show broad peaks.

and (2) are inaccurate, the measured pressures were fitted to four- or five-degree polynomials
in density for use in the following perturbation treatment.

Small systems were studied to check for size effects, which might be important if ordered
states are forced to accommodate a simulation cell that does not match their structure. For
instance, the honeycomb and diamond lattices can both be compressed anisotropically to
‘brick wall’ structures that fit a rectangular cell. Sciortinoet al [14] simulated ice at
constant density in a cubic cell of fixed shape and at constant pressure in a cell of flexible
shape and found only small differences in the equation of state and the pressure where the
ice collapsed. Two-dimensional networks withN = 96 and 1.3 6 λ 6 1.5 show a weak,
reversible, first-order phase transition in which the density changes by 1–2%. The structural
origin of the transition is shown in figure 2. The lower-density phase has a disordered glassy
structure, somewhat like a Penrose tiling with several different tile shapes, and the higher-
density phase is an ordered crystal in which all the hexagons have the same bricklike shape.
Formation of the crystalline structure is slow and it can be avoided by compressing rapidly to
high density. For the larger systems ofN > 500 particles that were used in the quantitative
analyses the high-density crystalline form was not observed and the high-density state was
a disordered glass whenλ 6 1.5, as shown in figure 4. The radial distribution functions for
three-dimensional crystalline and amorphous structures near their close-packed limits are
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Figure 3. The pressure,PV/NkBT , for N = 600 SSW (Nv = 3, D = 2, λ = 1.3) permanently
bonded particles versus density. The line shows equation (2) (withC2 = 1.87 andzmax = 1.15)
whenz > 1.05, equation (1) whenz 6 0.7 and a polynomial fit for 0.7 < z < 1.05.

Figure 4. A disordered configuration ofN = 600 SSW (Nv = 3, D = 2, λ = 1.3) permanently
bonded particles at the highest pressure shown in figure 3. Dots locate the particle centres and
lines show the bonds. The radial distribution function for this structure is close to unity beyond
three diameters.

compared in figure 5.
The main conclusion to be drawn from figures 4 and 5 is that the open crystalline

networks that are stable under tension can transform under pressure to dense amorphs which
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Figure 5. The radial distribution functiong(r) versusr/σ for a crystalline structure of the SSW
(Nv = 4, D = 3, λ = √

(8/3)) model at densityz = 0.95 wherePV/NkBT = 59.62 and for
an amorphous structure of the fully bonded SSW (Nv = 4, D = 3, λ = 1.2) model at density
z = 1.35 wherePV/NkBT = 74. The points are from course-grained averages over spherical
shells of volume 4πr2 δr, with a thicknessδr = σ/20, and straight lines are drawn between
successive points to guide the eye.

have the same network topology as the crystal but do not have long-range geometrical order.
Except for the crystallization of small systems mentioned in the previous paragraph, there
is no indication of any discontinuity in the pressure between the high- and low-density
limits, but first-order discontinuities emerge when the model is augmented by a potential
that stabilizes the open bond angles of the low-density crystal.

3. Perturbation treatment

The effect of adding an angle dependent potential is estimated here from a perturbation
treatment. The logic follows earlier perturbation theories for fluids [26, 27] but uses a
different reference system and a different perturbing potential. The models described in the
previous section provide the reference system and the perturbing potential is applied to the
bond angles.

To simplify the equations the configuration integral for the reference system is expressed
as a sum overk = 1, 2, . . . , � discrete configurations. This can be accomplished by
imagining the space of volumeV to be subdivided into a lattice ofV/ω very small cells,
each of volumeω. Space is ‘quantized’ in this way by the finite number of significant
figures used to represent the particle positions in simulations, for example. A configuration
can then be specified by a list of theN cells where the particle centres are located. In each
one of those configurations each particle centre can move over the volumeω of its cell so
each configuration contributesωN to the configuration integral. The potential energy of the
reference system is taken to be zero and its configuration integral can be expressed as

Q0(N, V, T ) = ωN�(N, V, ω) (3)

where the subscript zero is used to indicate a property of the reference system.
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The energyu(θ) associated with the bond angleθ between a pair of bonds that meet at
a common vertex is arbitrarily assigned the simple harmonic form

u(θ) = E(θ − θT )2 (4)

whereθT is the angle where the energy is a minimum andE is an energy which specifies the
strength of the perturbation. In this workθT = 120◦ in two dimensions and the tetrahedral
angle 109.47◦ in three dimensions. Repulsions between non-bonded second neighbours will
favour structures withθ = θT because the second neighbours are then as far apart from
each other as possible.

When the perturbation is turned on the potential energy of configurationk is

Uk = nbNE〈(θ − θT )2〉k (5)

where 〈(θ − θT )2〉k is an average over all the bond angles in configurationk and
nb = Nv(Nv − 1)/2 is the number of bond angles per molecule. The potential energy
of configurationk is expressed in terms of its fluctuation from the mean value

Uk = 〈Uk〉0 + 1Uk (6)

where〈Uk〉0 = nbNE〈〈(θ − θT )2〉k〉0 is an average over the configurations of the reference
system. The perturbed system samples the same set of�(N, V, ω) configurations as the
reference system and its configuration integral is therefore

Q =
�∑

k=1

ωN exp{−βUk} = Q0 exp{−β〈Uk〉0}〈exp{−β 1Uk}〉0 (7)

whereβ = (kBT )−1.
To calculate the last average in equation (7),〈exp{−β 1Uk〉0, the distribution of the

fluctuations in the reference system is assumed to be Gaussian [26, 27] so that, with the
abbreviationsx = 1Uk anda = (2〈x2

0〉)−1,

p(x) dx = √
(a/π) exp{−ax2} dx. (8)

The Gaussian form neglects any higher moments of the distribution and truncates the
perturbation expansion at second order. It yields

〈exp{−β 1Uk}〉0 =
∫ +∞

−∞
p(x) exp{−βx} dx = exp{β2〈(1Uk)

2〉0/2}. (9)

Equations (7) and (9) give the configuration integral of the perturbed system in terms
of averages that can be measured in the reference system. The configurational part of the
Helmholtz potential,A = −kBT ln{Q}, is

A = A0 + 〈Uk〉0 − 0.5β〈(1Uk)
2〉0 (10)

and the pressureP = −(∂A/∂V )T is given by

PV/NkBT = P0V/NkBT + nbz(E/kBT )(df1/dz)0 − 0.5(nbzE/kBT )2(df2/dz)0 (11)

where f1 and f2 are abbreviations for the averagesf1 = 〈〈(θ − θT )2〉k〉0 and f2 =
N〈[〈(θ − θT )2〉k − f1]2〉0.

During the simulations reported in the previous sectionf1 andf2 were averaged over
100–500 configurations of 512 or 600 particles during runs of one to two million collisions.
The second-order termf2 is generally much smaller than the first-order termf1 as shown
in figure 6. No attempt was made to compute higher-order terms becausef2 is already very
small and shows a scatter of 5–10%. The results were fitted to empirical polynomials in the
variable (zmax − z)(z − λ−D) to estimate the density derivatives required in equation (11),
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Figure 6. The fluctuation termsf1 and f2 (defined after equation (11)) versus density for a
three-dimensional system ofN = 512 SSW (Nv = 4, D = 3, λ = 1.5) permanently bonded
particles.f2 is amplified by a factor of ten. The curves are polynomials in(zmax − z)(z −λ−D)

that fit f1 to within ±0.0015(z 6 0.85) andf2 to within ±0.0006. At densities abovez = 0.85
f1 becomes independent of density and the following perturbation analyses were applied only
in the lower-density range wheref1 varies smoothly with density. The maxima inf1 and f2

occur near the density where the pressure is zero in all the models.

When the high-density state is amorphousf1 becomes constant before the high-density limit
is reached, suggesting that the bond angle fluctuations becomes frozen in. The following
perturbation analyses are limited to the lower-density region wheref1 varies smoothly with
density, to avoid any complication from the apparent discontinuity in the slope(df1/dz)0.

4. Results

Figure 7 shows pressure–volume isotherms calculated from equation (11) for the two-
dimensional model withλ = 1.3. This is the model whose high-density structure is shown
in figure 4. Features of figure 7 are the emergence of two sets of van der Waals loops
and an intermediate phase that expands when cooled at high pressure before collapsing to
a denser phase. These features are common to the two-dimensional models withλ = 1.3
and 1.4 and the three dimensional models withλ = 1.2, 1.3, 1.5 and

√
(8/3). The maxima

and minima on the isotherms in figure 7 locate the spinodal lines, where the compressibility
diverges, and Maxwell’s equal-area construction gives the phase coexistence lines, which
are shown in the pressure–temperature phase diagram (figure 8). For the negative-pressure
loops the critical temperature is nearkBT /E = 1/6 for all the models, the critical pressures
are in the rangePV0/NE = −2 ± 1.5 and the slope of the coexistence line in figure 8 is
positive, dptrans/dT > 0, which shows that the perturbing potential favours the intermediate
phase in the density range of the low-pressure transition. For the positive-pressure loops
the critical temperature for the different models is in the range 1/6 > kBT/E > 1/8, the
critical pressures are in the range 1< PV0/NE < 15 and dPtrans/dT < 0, which indicates
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Figure 7. The pressure,PV0/NE, predicted by equation (11) for the perturbed SSW (Nv = 3,
D = 2, λ = 1.3) model versus the volume (V/V0 = 1/z). Numbers show the value ofE/kBT .

that the perturbing potential also favours the intermediate phase relative to the high-density
phase. The intermediate phase models an icelike crystal which is energetically stabilized
by minimizing the variation of the bond angles fromθT . Whenλ 6 1.5 the dense state is
a glassy material like than shown in figure 4, so the high-pressure transition corresponds to
the collapse of an icelike crystal to an amorphous solid without breaking any bonds. The
collapse also occurs in the special cases where the densest state is a perfect crystal.

The two-dimensional model withλ = √
3 shows only the high-pressure loops. The

other two models studies (λ = 1.4, D = 3 andλ = 1.5, D = 2) revealed only the negative-
pressure loops but in these cases the variance in the bond anglesf1, in the reference system,
becomes constant at a relatively low pressure and the perturbation analysis was not applied
in the higher-density range where the location of the high-pressure loops is suggested by
interpolation from the other models.

The models expand when they are cooled near the high-pressure end of the intermediate
phase. The expansivityα = (∂ ln{V }/∂T )p is related to the thermal pressure coefficient
γ = (∂P/∂T )V and the compressibilityκ = −(∂ ln{V }/∂P )T by α = κγ . Sinceκ is
positive for stable or metastable states,α has the same sign asγ , so where the pressure
increases asE/kBT is increased, at a constant volume (figure 7), the expansivity is negative.

Where two pressure–volume isotherms intersect,α = γ = 0 and the density is an
extremum on an isobar. At low temperatures the pressure–volume isotherms shown in
figure 7 (and for all the other models that show both loops) cross at a common volume
where the pressure is close to zero, which means that the locus of the density maximum is
approximately isochoric and isobaric. This result has a simple explanation in terms of the
relation

γ = P0/T − (2kBT 2)−1N(nbE)2(df2/dV )0 (12)

which is obtained by differentiating equation (11) and noting that, in the reference system,
γ0 = (∂P0/∂T )V = P0/T . When the reference system is at the density where its pressure,
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Figure 8. Qualitative sketch of the phase boundaries, spinodal lines and locus of the density
maximum in the pressure–temperature plane for the perturbed SSW (Nv = 3, D = 2, λ = 1.3)
model. B1 and B2 are the binodal lines, where two phases are in equibibrium, estimated by
drawing Maxwell equal-area constructions across the loops shown in figure 7. S1–S4 are the
spinodal lines, which are the loci of pressure extrema on the isotherms in figure 7. S1 and S4
are the limits of stability of the intermediate phase under compression and tension, respectively.
α = 0 shows the locus of the density maximum. All the models that show two sets of van der
Waals loops yield a qualitatively similar diagram. For the model shown the critical temperature
is nearkBT /E = 1/6 for both transitions so the ordinate isT/Tc = 6/(E/kBT ).

P0, is zero, the bond angles are least constrained by external forces and the fluctuation terms
f1 andf2 in figure 6 are both near their maxima where(df1/dV )0 = 0 and(df2/dV )0 = 0.
When this is the case equations (11) and (12) predict thatα andγ are zero at the density
whereP ≈ P0 = 0.

The spinodal lines which mark the limits of stability of the icelike phase, shown as S1
and S4 in figure 8, are also nearly isochoric. For example, the spinodal line S1 in figure 8
corresponds to the maxima which occur near the volumeV/V0 = 1 in figure 7. Sciortino
et al [14] made a similar observation for simulated ice and cristobalite. For instance, they
found that ice collapses when compressed to a volume of 15.8 cm3 mol−1 and ruptures when
stretched to 22.7 cm3 mol−1, despite an order of magnitude variation in the temperature.
It is interesting that the latter volume is close to the volume, 22.3 cm3 mol−1 [28], where
extrapolations suggest that liquid water becomes unstable near−200 MPa in the 0–50◦C
temperature range. A possible implication is that ice and water both become unstable at
about the same density when they are stretched [29] to−200 MPa.

The apparent discontinuity in the slope(df1/dz)0 at high density, shown in figure 6,
would generate a third ‘loop’ in the range of stability of the high-density phase. However,
the discontinuity is probably the result of the ‘freezing in’ of the bond angles and no
significance is attached to it here.

Several reservations about the reliability of the perturbation treatment need to be
stated. Transitions between phases of different symmetry do not have critical points
because the phases cannot become identical. The perturbation treatment is a mean-field
approximation which may generate artificial critical points and spinodal lines. In view
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of the low temperature needed to reveal the first-order transitions,kBT /E 6 1/6, the
accuracy of the second-order perturbation treatment, which neglects terms in(E/kBT )3

and higher, is suspect. Significant uncertainty in the predicted pressures arises from the
numerical calculation of the slopes of the lines shown in figure 6, although the qualitative
phenomenology is not changed by using different fitted functions to estimate the slopes.
The fixed shape of the simulation cell may influence the properties of the reference state at
high density.

Despite these reservations, the models display a common phenomenology which is
insensitive to the dimensionality, to the value ofλ and to variations in the numerical
analyses, and a similar phenomenology is derived, with mean-field approximations, from
lattice models for materials that expand when cooled [18–21]. Those similarities give some
grounds for supposing that the phenomenology derived from the perturbation analysis is
qualitatively correct, in the mean-field approximation, and that it provides a useful guide to
the interpretation of experiments and to the development of better models.

5. Conclusions

The calculations show that open-network crystals, stabilized by a potential that favours
tetrahedral bond angles, can collapse under pressure, by varying the bond angles, to a
denser state that can be amorphous. The collapse also occurs in the models in which the
densest state is a perfect crystal, in which case there may be no objection to a scenario that
includes a critical point because both phases have the same symmetry. The collapse occurs
without breaking bonds so that the dense product stores a memory of the bond topology of
the original crystal and is likely to reform the same crystal when decompressed. The limits
of stability of the open-network crystals under extreme pressure or tension are spinodal lines
where the compressibility diverges.

The model makes the counter-intuitive predictions that near the high-pressure limit of
the open crystal the compressibility increases with pressure and the expansivity is negative.
A simulation study [14] of ice and cristobalite supports the first of these predictions by
showing that the variation of volume with pressure has the form predicted [28] near a
mean-field spinodal. Experiment [3] and simulation [9] both show that the pressure where
ice collapses decreases as the temperature is increased, which agrees with the negative
slopes of the lines S1 and B1 in figure 8. For the spinodal line to have a negative slope
the expansivity in its vicinity must be negative [28]. At atmospheric pressure, the density
of ice 1h goes through a maximum at 63 K and the expansivity is negative at temperatures
below 63 K [17, 30]. If the collapse of ice at high pressure [1–3] is indeed due to a spinodal
instability, then the expansivity of ice must be negative at the pressure and temperature of
the collapse. The model therefore makes the testable prediction that the density maximum
in ice shifts to higher temperatures at high pressure.

Polyamorphism [31, 32], the occurrence of more than one distinct amorphous condensed
phase of the same composition but with different density, has not been studied here. The
best known example is the transformation of the high-density amorph (HDA) formed by
compressing ice [1–3] to a low-density amorph (LDA). When the HDA is recovered at
atmospheric pressure and warmed above 117 K it transforms to the LDA with a 20%
volume increase [3]. According to the present model the HDA would expand back into the
ice form from which it was made because bonds do not break. However, while hydrogen
bonding seems to be complete in HDA and LDA water [33], LDA water is less stable than
ice and freezes near 150 K with the evolution of about 1300 J mol−1 of heat [1–3], which
suggests that some reorganization of the bond occurs during the formation of HDA and
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LDA water. Some HDA clathrates [7] do regenerate the original crystal on decompression.
Polyamorphism might be studied by starting with a reference system in which the bond

patterns are those of an amorphous solid or liquid. Slowly quenched glasses of the SSW
(Nv = 4, no1) model have only 1% of their bonds broken [25] and could be used for the
reference system, for instance. While this reference system might differ in some qualitative
way from the crystalline one used here, it seems likely that it could generate an analogous
polyamorphic phenomenology. Mishima [3] argued that the existence of the HDA and the
LDA implies that there are two distinct liquid phases of water and Tanaka has found some
evidence for the two liquids in a simulation study [34].
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